- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Conley, S. (1)
-
Gvakharia, A. (1)
-
Kort, E. A. (1)
-
Smith, M. L. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Agricultural activity is a significant source of greenhouse gas emissions. The fertilizer production process emits N2O, CO2, and CH4, and fertilized croplands emit N2O. We present continuous airborne observations of these trace gases in the Lower Mississippi River Basin to quantify emissions from both fertilizer plants and croplands during the early growing season. Observed hourly emission rates from two fertilizer plants are compared with reported inventory values, showing agreement for N2O and CO2emissions but large underestimation in reported CH4emissions by up to a factor of 100. These CH4emissions are consistent with loss rates of 0.6–1.2%. We quantify regional emission fluxes (100 km) of N2O using the airborne mass balance technique, a first application for N2O, and explore linkages to controlling processes. Finally, we demonstrate the ability to use airborne measurements to distinguish N2O emission differences between neighboring fields, determining we can distinguish different emission behaviors of regions on the order of 2.5 km2with emissions differences of approximately 0.026μmol m−2s−1. This suggests airborne approaches such as outlined here could be used to evaluate the impact of different agricultural practices at critical field‐size spatial scales.more » « less
An official website of the United States government
